Meshing

The mesh represents the actual geometry we are modelling
Discrete approximation of the geometry and field

1. Type of cells
2. Type of grids
3. Adaption to geometry / flow
4. Mesh quality parameters
5. Boundary layer mesh
6. Comparison and guidelines
Meshing

Why do we need a grid?

Remember:

\[
\left(\frac{\partial f}{\partial x} \right)_{x_i} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}
\]
Meshing

Limit cell number \iff Geometric complexity \iff Accuracy
Meshing — Definitions

Vertex \rightarrow Edge \rightarrow Face \rightarrow Volume

2D domain
Meshing — *Cell shapes*

2D
- Quadrilateral («quad»)
- Triangle («tri»)

3D
- Prism with “quad” base
- Tetrahedron («tet»)
- Hexahedron («hex»)
- Pyramid
- Prism/wedge
- Polyhedron
Meshing – *Cell shapes*

1. **Hexahedral cells**: Easy to use in structured grids, high quality with minimum skewness, excellent numerical properties and less numerical diffusion if aligned with flow direction. May have concave faces. 6 neighbor cells. **Structured and unstructured grid**

2. **Tetrahedral cells**: Easy to generate, only planar faces, suitable with complex geometry, only 4 neighbor cells → more cells needed for same accuracy as with hex cells. Should avoid them in highly viscous regions (boundary layer). **Unstructured grids**

3. **Prism and pyramid**: Mostly used in boundary layer mesh and in transition between boundaries and core mesh. Get a prism when a hex is split into two.

4. **Polyhedral cells**: Very good automated mesh properties. Many neighbors (up to 10) and therefore better approximations of gradients. More memory usage. Requires good surface mesh. **Unstructured grids**
Meshing — *General about cell shapes*

- **Tetrahedral** use less memory, and the mesh can be generated much faster.
- Tetrahedral requires 5 to 8 times as many cells as with trimmed or polyhedral for same accuracy.
- **Trimmed (hex)** and **polyhedral** generally more accurate.
- Tetrahedral and polyhedral rely on proper surface meshing (starting point).
- **Polyhedral** quality of volume mesh can be poorer than tetrahedral starting with a bad surface mesh.
Meshing—False diffusion, example Star CCM+

- Assume no physical diffusion
- The solution to this is 300 degC above the diagonal and 200 degC under
- With first order upwind, the solution is smeared
- Need finer grid, and combine with second order upwind

Gridlines should be as parallel with the flow direction as possible
Meshing – *False diffusion, example Star CCM+*
Meshing—False diffusion, example Star CCM+

2nd order convection

1st order convection
Meshing – *General Mesh types*

Structured type

Hexahedral mesh + some prisms/pyramids

Multi-block

Figure 5.2.15: Sub-division of computation domain around an airfoil for multi-block mesh generation

Figure 5.2.16: Multi-block structured hexahedral mesh using H- and C- topologies around an airfoil
Meshing – General Mesh types

Structured type
Trimmed
(Octree decomposition)

Hexahedral mesh
+ some prisms/pyramids

Figure 5.2.12: 2D illustration of Octree decomposition used in the generation of trimmed mesh
Meshing – General Mesh types

Structured type

Multi-block
Meshing — General Mesh types

Un-Structured type

No regularity

Tetrahedral
Polyhedral
also Hex cells

Figure 5.2.19: Fully unstructured tetrahedral mesh around an airfoil
Meshing — General Mesh types

Hybrid type
Propeller and rudder
Aft ship

Hexahedral

Tetrahedral
Meshing – General Mesh types

Structured grid:
Gridlines of same family do not cross each other, cross the other family gridlines only ones.
Cartesian mesh is the simplest form with one block of hexahedral cells.
Curvilinear gridlines to account for geometry with curved edges.

Multi-block to get good grid. O-, H- and C- grid.
More time consuming to generate, but offers increased accuracy
More difficult to adapt it to the actual CAD model
Surface mesh just a byproduct from volume mesh, need good CAD quality
Surface re-meshing should be used
Meshing — *Mesh types in Star CCM+

From User-Guide->Pre-Processing->Meshing

FINITE VOLUME MESH TYPES

- **Structured**
 - Directed Meshing

- **Unstructured**
 - Parts-Based
 - Region-Based

Surface wrapper
Surface remesher
Polyhedral
Trimmed
Generation of Trimmed Volume Mesh

CAD

“template“ (automatic)

Mesh for internal CFD

Mesh for external CFD
Meshing – Mesh interface

Structured grid:
With multi-block it is necessary to have some connectivity between the blocks
Common block interfacing mesh methods:
Overlapping(chimera), non-matching interface, matching interface
Meshing – Mesh interface

The same as previous slide is true with multi-region mesh of unstructured type and hybrid mesh.

If the mesh between regions of different mesh is non-conformal, should check if the solver can handle this.

Star CCM+ tries to mesh conformal automatically. If not, can modify the CAD model.
Meshing – *Mesh interfaces*

Non-matching grid

A block-structured, non-matching grid
Meshing – *Mesh quality*

Aspect Ratio:

Measure of stretching

Consequence for resolution of convective fluxes

Stretching along flow direction is less critical
Max 5:1 in interior domain, 10:1 in boundary layer with cells aligned with flow direction.
As low as possible where the flow is multi-dimensional
Meshing – Mesh quality

Skewness:

Measure non-orthogonality
Should never be over 85°

Results in convergence problems
Meshing – Mesh quality

Face validity:

Value should not be less than unity
If less than 0.5, face vector points inwards
Meshing – Mesh quality

Cell quality:

Perfect has quality 1.0
Bad towards zero
Meshing — Mesh quality

Volume change:

No volume change is 1.0
Less than 0.01 is bad

Good Cells

Bad Cells
Meshing – Mesh quality

More quality criteria, find in Star CCM+ user guide. Search «mesh metrics»

Coarse mesh is a source to error. Must be refined in regions where large gradients are expected to occur. Example behind cylinder (wake)
Meshing — Boundary layer mesh

Turbulent boundary layers can be modelled by semi-empirical approach or entirely resolved. In the first approach, wall functions are used to predict the inner part of the boundary layer, called the viscous sub-layer and buffer layer. This means the mesh can be coarser, since the inner part of the boundary layer is not resolved. In the second approach, the entire boundary layer is modelled. A much finer mesh is required.
Meshing – *Turbulent boundary layer*
Meshing – Turbulent boundary layer
Meshing – Prism layer

\[y^+ = \frac{u_\tau y}{\nu} \]

\[u_\tau = \sqrt{\frac{\tau_w}{\rho}} \]

30 < \(y^+ \) < 300 \hspace{1cm} y^+ \leq 1
Meshing – *Prism layer*

In Star CCM+ there is an enhanced $y+$ wall treatment (All $y+$ wall treatment), which makes an adequate solution for both cases. This makes it easier for the user.

Still it is recommended that the $y+$ value do not exceed the upper limit of $y+$ values with wall functions (200-300).
Meshing – *Comparison between mesh strategies*
How to perform mesh check – *surface mesh*

Check CAD model
- Visualize
- Surface Repair tool

Surface mesh
- Visualize
- Run diagnostics
- Threshold on boundaries
- Automatic surface repair tool
Meshing – General Guidelines

1. Clean CAD model
2. Reduce cell skew, especially on hex cells. Should be less than 85 deg
3. Angle of gridlines on outer boundary of mesh should be close to 90 degrees
4. Avoid tetrahedral cells in the wall boundary layer
5. In the interior (away from boundaries) aspect ratio less than 20
6. Parallel alignment with flow if it is possible to predict
7. 5-10 layers of boundary cells (prism layers). If no wall function is used, and low Re flow, must have many more cells (15 cells).
8. As long as the surface geometry is well predicted, and the flow direction is fairly parallel, use “hex” mesh (trimmed)
Meshing – Conclusion

• A structured mesh is most accurate. It is much more time consuming to generate for complex geometry.
• Unstructured mesh is efficient to generate, use less memory. Using tetrahedral cells is not as accurate, and need more cells to produce same accuracy.
• Hybrid mesh can be a good compromise