5. FVM discretization and Solution Procedure

1. The fluid domain is divided into a finite number of control volumes
(cells of a computational grid).

2. Integral form of the conservation equations are discretized and applied
to each of the cells.

3. The objective is to obtain a set of linear algebraic equations, where the
total number of unknowns in each equation system is equal to the
number of cells.

4. Solve the equation system with an solution algorithm with proper
equation solvers.
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Discretization-— so/ution Methods

We want to transform the partial differential equations (PDE) to a set of

algebraic equations:
i E

With Finite Volume Methods, the equation is first integrated. This is
different from Finite Difference Method where the derivatives are
approximated by truncated Taylor series expansions.

Advantage with FDM is it is easy to use, but is limited to structured grids
(simpler geometry).
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Discretization— on vs Fvv

FDM

The key difference is
Gauss’ theorem

FVM

do _
J,, = @02 - @0

(3= 02\ (b=
B Ax Ax o




Conservation Equations

We have the conservation equations:

- Mass (mass is conserved)

- Momentum (The sum of forces equals the time rate of change of
momentum)

- Energy (Energy can not be created nor destroyed)

These equations can be expressed as a single generalized transport
equation
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Discretization- transport equation

0 9, 9, 9,
(pe) v Loue) = p 09 A
: . | !
Transient Convective Diffusive Source

¢ = 1 gives continuity (mass)
¢ = u gives momentum

¢ can also be temperature or other scalars, but need to check if the equation is still
satisfied.

Source terms can be external body forces, like gravity. Observe also that the pressure
gradient is included in 5, for momentum
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Solution procedure — momentum equations

Insertion of velocity in the transport equation gives us transport of
momentum. The resulting equation requires different treatment than
transport of any scalar (like temperature) because of the following reasons:

1. The convective terms are non-linear since they contain U?
2. All equations are coupled because velocity component appears in all

3. Momentum equation contain a pressure gradient (inside source term)
without an own explicit equation for pressure in the equation set
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Discretization— rinite vVolume Method

The equation is first integrated.
Discretization is done in the second step.

When it's integrated, Gauss' theorem is applied and the net fluxes on cell
faces must be expressed from values at the cell centers using
interpolation.

Advantage is flexibility with regard to cell geometry. Advantage in less
memory usage. There are also well developed solvers for this method.

FVM has the broadest applicability of all CFD methods.
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Discretization- integration of transport equation

Integrated over the cell volume:

) ) o [ 0
f Mdluj —(pujqb)dV+f —<F—¢>dv+j S AV

The second and third terms can be expressed as fluxes (Gauss' theorem).
That is transport across the CV boundaries.

If the time term is included, we must integrate in time as well.
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Discretization FVM- discrete transport equation

——dV =
dt At

j d(pop) (ppV)™ 1 — (ppV)™
(074

]
La—x]_(puqb) dA ~ Z(M)u ‘Mg

0 (’)qb) ( 310 >
— | I'=—]dA = [—n
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Discretization-— system of equations

We have already mentioned that we wish to discretize the PDE's and
express them as linear algebraic equations of the form:

apPp = z AnpPnp + qu

nb

Solving these set of equations (for each cell) requires an equation solver. If the
algebraic equations are non-linear they may be linearized.

In addition to having an efficient solver for the algebraic equations, we need a
solution algorithm solves the equations in the correct order.
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A simple numerical example

(On blackboard)

Steady-state one-dimensional diffusion equation:

Solution =
(if I const.)

¢ can be temperature,
and I' thermal conductivity.

11
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A simple numerical example - paysics

Classification of the problem:

1. What does this equation describe if ¢ is temperature?
2.k is a function of temperature, but can be taken as constant in many situations

Physical boundary conditions:

1. Dirichlet: T = const. -> constant temperature

dT
2. Neumann: ~. = const. -> constant heat flux, constant normal temperature
gradient

12 @ NTNU




Derivative vs. Numerical

Definition derivative of function f = f(x):

af:C1 - f(x) =C-x+ —>af"“Af

dx 0x  Ax
% f of x?
ﬁ:(:l _)a:CI.X-I_CZ _)f(X):C]_'?"‘Cz'X‘l‘C:g

v o) (@) -, (20~

6x2 = Ax Ax Ax

f(x)

Ax




Approximation of the first derivative, the FDM

approach
Forward-differences (FD), 15t order accuracy:

(d_¢> Qi1 = bi _ Piva — P

dx Xiy1 — Xi Ax

Backward-differencing (BD), 15t order:
(d_CP) Qi bier _ b~ i
i

dx X; — Xj_q Ax

Central-differencing (CD), 2"d order:
(d_¢> L Qiv1 = b1 Piv1 — Pia

dx Xiv1 — Xj—q 2Ax

14

CD with higher order is
normally applied to
diffusion terms

Local interior grid
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Approximation of the second derivative...

Evaluate the inner derivative at half-way between nodes, and
central differences with Ax spacing for the outer derivative:

r 49
dx

)l 1/2

()] e

dx Ax

Where

¢%+1

d¢ b1 — @i (do
dx /. Ax "\dx /.
i+1/2 i—1/2

15

N bi — Pi_q

Local interior grid

Ax

i—1 [ i+ 1
————1—0-
i—1/2  i+1/2
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Approximation of the second derivative (FDM)

Evaluate the inner derivative at half-way between nodes, and
central differences with Ax spacing for the outer derivative:

d do
[dx <F dx

If ' = const.:

=20+ @i+ i
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Ax?

r. Qitn=¢i_ ¢i — Pi—q
)] w27 Ay i-1/27 Ay
o Ax
l
[ + Tigq

Local interior grid

i—1 [ i+ 1
————1—0-
i—1/2  i+1/2
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Resulting equation system

We wish to express the resulting system in a form

aP¢P — anb¢nb + Sgb

nb
With constant I we get:

2 ¢l ¢l+1 ¢l—1 =0

Ay = 2,4, = 1andQ; = 0
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Resulting equation system

On a structured mesh (FDM), mesh and the

b1 = P equation matrix is much of the same thing.

2¢0 =1 —p3=0

203 — o —a=0

bv=0 A x= b
1 0 0 0 o0 b+ do
1 2 -1 0 o0 b, 0
0 -1 2 -1 0| *|¢sl =10
o o0 -1 2 A b, 0
O 0 0 o0 1 b b,
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Discretization— riie-voiume Approach

d ( dp\ . (. db dp\
[ 4(r)o(on) (o) -

Local interior grid
[p + 1% Iw +Ip
e — Iy =
2 2 Fluxes w ., P o E
—— :1 77777 —e—
d — S
(I‘A —d)) =T, A4, (¢E ¢P> Ax
dx Axpg

dp\ _ Pp — Pw
(FAE)W_FWAW( —
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Discretization— riie-voiume Approach
Express on this form (algebraic equation):

appp = Z AnpPnb T S¢

nb Local interior grid
oA [yAy
— — _ =0 W o P ¢ E
AXpp (Pr — dp) Axyyp (Pp — dw) *Vl‘f]ijl o—
A
X
LA, T,A, [ A, Ay
+ + 0
(AxPE Axyp br AxPE ¢E Axyp Pw
‘ 1 ' — — — Fluxes
ap ag Ay SP
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Discretization-— 2o piffusion fluxes

d [ do B d d¢ d¢ d¢
[ (ra)av =|(rad2) - (ra%2) |+|(ra%2) - (ral2)

Its a CV equation just like we showed N
earlier. Flux /n equals out %

_|_

Approximating face absolute values and

derivatives poses similar problems as in
FDM.

. A o
Need discretization ofa—f

o=
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Discretization— o convection fluxes

d
.] E (pugp)dV = A.(pud). — Aw (pud)y
AV

Dealing with these terms are not straightforward,
and central differences as for the diffusion leads to
unphysical results for high velocities.

Local interior grid

Introduction of the Peclet number:

y W w P e E
pe = -+ ———o——o—
['/Ax -
Ax

Expresses ratio between convection and diffusion
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Discretization— /o convection fluxes

The right discretization scheme is important for the convective fluxes at
high Peclet numbers.

Different alternatives:

First-order upwind scheme: ¢, = ¢p (if (pug), > 0)

Second-order upwind Local interior grid
Hybrid scheme: Combination of central- and upstream
QUICK scheme W w P e E
——t———o—
General: Central differences only if Pe < 2 T
If large Peclet numbers, use the upstream value
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Solution - gesiquals

Convergence criteria when solving:

an anbd)nb + S(,b _ an)P
apQp

< € (small number)
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SOIUtiOI‘I — Residuals

Decreasing residuals means the solution may not be converged

If they flatten out and have a low value, like 7£-4 or lower we may assume
that convergence have been reached. But this depends on the case.
Increasing residuals is normally a bad sign.

Correct residuals only mean that our algebraic equation system have been
solved, not that the solution is correct.

Other variables should be monitored as well to judge convergence
(forces, moment, temperature)
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Solution procedure — Solution algorithms

Pressure-velocity coupling is a general problem that must be dealt with.
Solution algorithm SIMPLE is an example of an algorithm that considers
this issue.

SIMPLE belongs to the family of solvers called pressure-based solvers

In Star CCM+, there are two pressure-based solution algorithms available,
Segregated and Coupled
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Solution procedure - segregated algorithm

Use less memory, but more time Update properties
required for convergence

Y
Solve in turn momentum

- Equations of different variables solved in eq”a"o”j: u v, w

° sequential manner (U/ v W ,0) Solve pressure-correction
equation

- Uses a pressure-velocity coupling
algorithm v

- Two such algorithms implemented: Upda;fgg;ﬁ:ﬂ”x’
SIMPLE & PISO and velocity

* Not suitable for flows with variable e o o
density. Suitable for incompressible
flow. JL

No (/Converged \ Yes Stop
7 '<\




Solution procedure — Coupled algorithm

Use more memory, but less time
required for convergence

AS

Equations solved simultaneously as a
vector of equations.

Suitable for variable density and
compressible flow or natural convection
problems

| Update properties

r

Solve simultaneously the
coupled equations:
Momentum equations (u, v,
W) and pressure-based
continuity equation

r

Update mass flux

L
Solve transport equations
for other scalar properties

No ¢ Converged? Yes Stop
\\5____ -
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Solution procedure — croice in Star CCM+

User Guide > Modeling Physics > Modeling Flow and Energy > Choosing Between Coupled and Segregated

i |

Choosing Between Coupled and Segregated

To guide the choice between the Segregated Flow model and the Coupled Flow model, consider their relative strengths and weaknesses.

The segregated algorithm uses less memory than the coupled.
The coupled algorithm yields more robust and accurate solutions in compressible flow, particularly in the presence of shocks.
The coupled algorithm is more robust for high-Rayleigh number natural convection.

The number of iterations that the coupled algorithm requires to solve a given flow problem is independent of mesh size. However, the number of iterations that the segregated algorithm requires increases
with mesh size.

In some situations the coupled algorithm can be combined with the implicit solver to permit large CFL numbers. This scenario would be analogous to an under-relaxation factor of 1 for all variables in a
segregated algorithm. In contrast, the segregated algorithm needs significant under-relaxation for both welocity and pressure and, in compressible flows, energy.

With these strengths and weaknesses in mind, it is suggested that you proceed as follows to select the algorithm:

Choose the Coupled Flow and Coupled Energy models for compressible flows, natural convection problems, and flows with large body forces or energy sources.
If computational resources are not an issue, choose the Coupled Flow model for incompressible and/or isothermal flows.

Choose the Segregated Flow model for incompressible or mildly compressible flows.

See Also

Modeling Flow and Energy Using a Coupled Approach

Modeling Flow Using a Segregated Approach




Solution - Residuals

Judging Convergence

Residual monitor plots are useful for judging the convergence (or divergence) of a solution.

Residual monitor plots are useful for judging the convergence (or divergence) of a solution, and they are created automatically within every simulation. However, it is important to understand both the
significance of residuals and their limitations. While it is true that the residual quantity tends toward a small number when the solution is converged, the residual monitors cannot be relied on as the only
measure of convergence. The limitations of residuals are as follows:

. The amount that a residual decreases by depends on the particulars of the simulation. Therefore, a three-order-of-magnitude drop in residuals is possibly acceptable for one simulation, but not another.

The initial guess also strongly influences the amount that residuals are reduced. If the initial solution satisfies the discretized equations perfectly, the residuals do not drop at all.

There are two types of discretization errors: dissipative errors and dispersive errors. Dissipative errors are characteristic of first-order upwind schemes; they are inherently stabilizing and produce residual
plots that tend to decrease monotonically. Dispersive errors are characteristic of second-order upwind schemes which tend to “smear” solutions less than first-order schemes. While dispersive errors tend
to produce residual plots that are not monotonic. This outcome is generally an acceptable price to pay for the enhanced accuracy.

In some cases, often because of poor mesh quality, dispersive errors result in oscillating solutions (that is, changing from one iteration to the next) within a few cells. The result is that the residual plots

can indicate that the solution is not "converged”. You have a choice to either accept the solution, or to try to stabilize it by choosing a lower-order numerical scheme. Frequently, it is better to accept the
solution.

Residuals do not necessarily relate to quantities of engineering interest in the simulation such as integrated forces, pressure losses, or mass flow rates.

With the issues above in mind, it is advisable to monitor quantities of engineering interest, such as integrated forces, pressure changes, or mass flow rates as well as the residuals. STAR-CCM+ features such as
scenes and plots can help you examine these quantities while the solution progresses. The features are described in detail in the chapter on

The choice of the engineering quantity, as well as the convergence criterion, is your judgment call. In the example below, taken from a large external aerodynamics solution, beth lift and drag coefficients are
monitored as well as the residuals. It is clear that not all quantities reach an asymptotic limit at the same time. Use your judgment and decide which coefficient is the most critical.
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Suggested Reading

 User Guide Star CCM+

— User Guide > Modeling Physics > Modeling Flow and Energy
— User Guide > Modeling Physics > Solving Transport Equation

 Krasilnikov section 5.3 & 5.4
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