

CSF INTERNSHIP: PROJECTS AND EXPECTATIONS

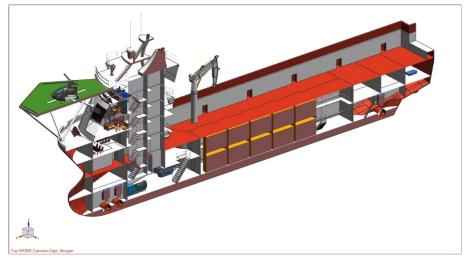
Henrique M. Gaspar Aug. 2014

Aalesund University College

THREE FUNDAMENTAL BRANCHES

Industry

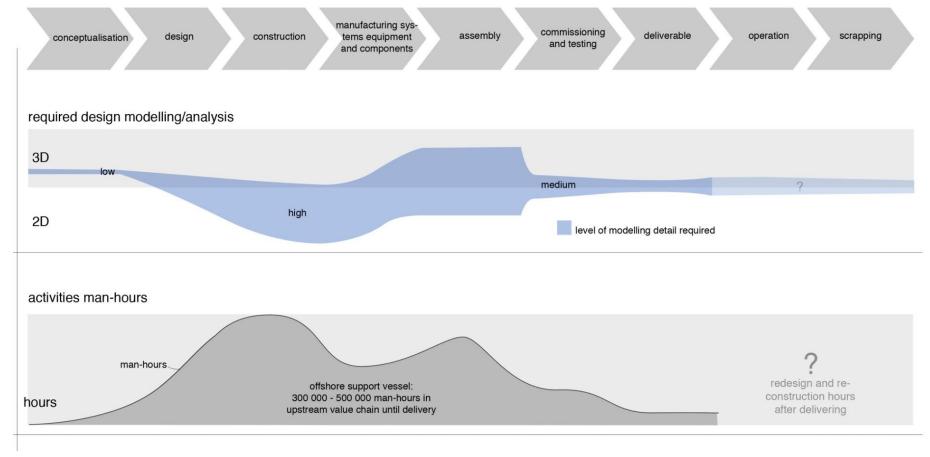
strong cooperation with Ulstein group and related companies in the region



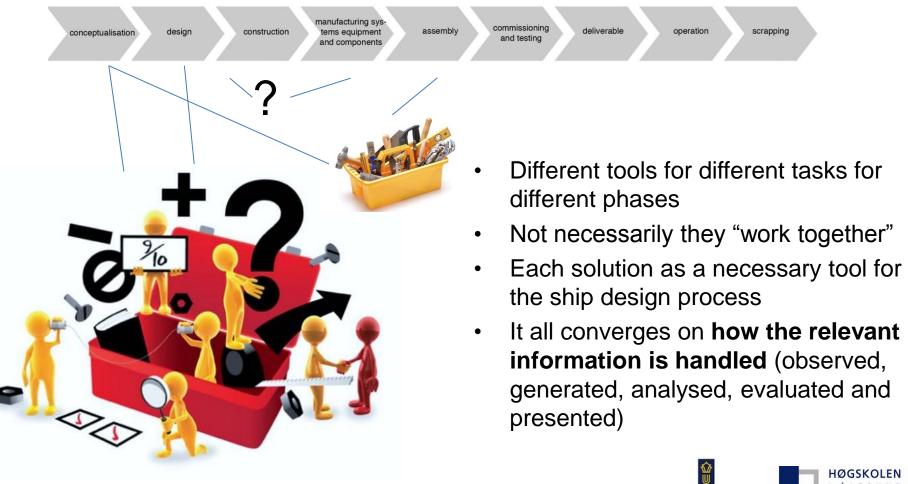
BIP PROJECT

Innovation Project for the Industrial Sector between Ulstein and HIALS :

ÉMIS - Efficient Modular Integration of Systems for Ship Design: Speeding up Modules Customization and Detailing Engineering for Ulstein

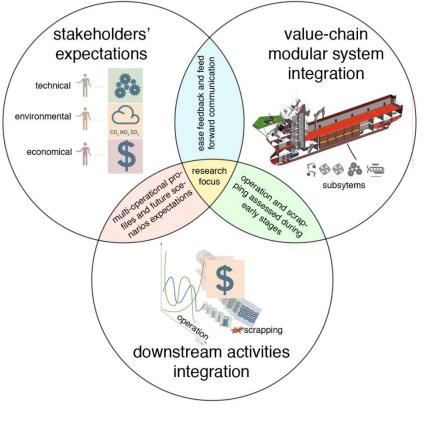

- To develop and implement more efficient methods to integrate complex modules in the process performed at Ulstein
- Productivity constrained by the limited ways to create, combine, evaluate and document each of the modules
- Effective and robust modular framework, able to combine standard (traditional) with customized (emergent) solutions through the ship design process.
- Take into account as well the detailing engineering, specially regarding an effective documentation towards 3rd party partners.

WHY INTEGRATE?


activities in the value chain

TOOLBOX ANALOGY

activities in the value chain


ULSTEIN

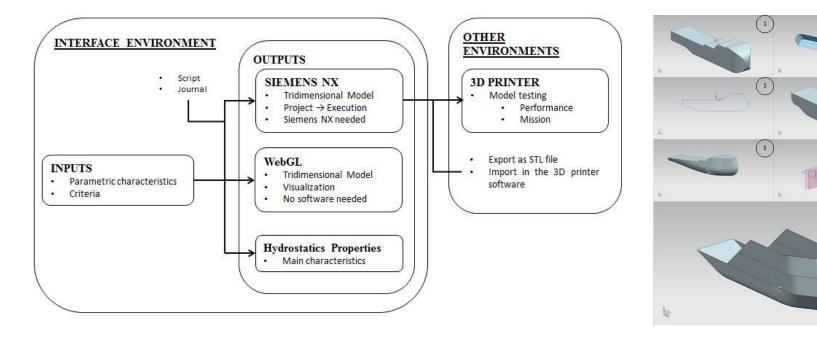
Aalesund University College

EMIS FOCUS AND CHALLENGES

3 Main Objectives:

- Develop a cost-effective framework for design and engineering of Offshore Vessels based on a modularized and standardized approach, through the whole valuechain, from the conceptual design of the vessel until scrapping
- 2. Develop a system theory based prototype design tool able to concurrently **integrate the framework with the current module work** at the value-chain
- 3. **Test and implement** the framework within the value chain elements

EMIS FOCUS AND CHALLENGES


2 research lines: Framework and 3D Modular System Integration

UDD FRAMEWORK TASKS JUNE 2ND	AUGUST 5 [™] UPDATE	CAD/CAE SOFTWARE TASKS	
Study on an multi-stakeholder/multi-platform framework needs and functionalities, which integrate the multi-levels of the ship design value chain (Ulstein Design Dashboard - UDD)	UDD Presentation July 8 th [1] Requirements to be sketched on August/September, based on Hydro tools and/or catalogue vessel.	Study on using NX as tool for rapid ship design prototype: first phase - conceptual design	A
Sketch of a prototype version of the framework, integrating designers and clients approaching conjointly a conceptual design	Functionalities presented in [1]. Waiting feedback for requirements from Øyvind Kamsvåg, Per Ivar Roald and Stein Frode Haugen.	Tutorial on how to draw a simple hull in Siemens NX (conceptual design)	
Integrate basic parametric equations for a fast first approach design in the framework	Prototypes activities starting in August. Meeting with Ali & Per Olaf during August. Implementation Framework starting from August.	Tutorial on how to parameterize a simple hull in Siemens NX	A
Study on the level of detail required to jump from ast to customized design in the framework	Study requiring feedback from other tasks, probably starting around October/November	Study on which calculations are provided "out of the box" for Stability and Structural analysis	
Sketch methodology for integrating the iramework with Ulstein tools from 2015	Study requiring feedback from other tasks, probably starting around October/November	Study on the level of detail required to jump from conceptual to basic design in Ulstein case	R
Summary of the pros and cons of the approach	Study requiring feedback from other tasks, probably starting around December	Proposal for methodology to merge CAD/CAE with the UDD framework from 2015	S prol
		Summary of the pros and cons of the approach (bottlenecks)	

EMIS FOCUS AND CHALLENGES

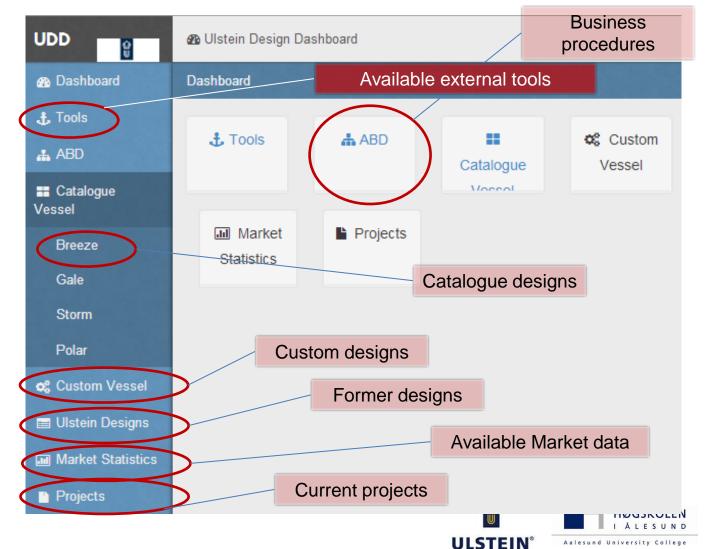
3D Modular System Integration (2 master students)

DESIGN DASHBOARD (UDD)

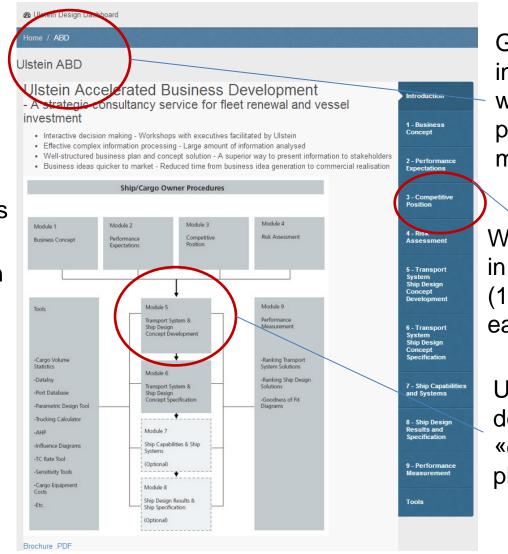
Dashboard:

a visual display of the <u>relevant information</u> needed to achieve one or more <u>objectives</u>, consolidated on a single platform, so <u>the information can</u> <u>be reached</u> at a <u>glance</u>

UDD	search							1			Ja	elcome, ne Devoops 💙
Dashboard	Home / Dashb	ooard										
Charts	HELLO,		8* f :	et in	th		56.45M			5.12M		\$ 107.83M
I Tables	DASHBO	ARD!			- 111.4	E	BITDA	I	OI	BDA	_	REVENUE
Forms			600									
🖵 UI Elements	MARKETF	PLACE									Overview	
≣ Pages	Ticker	Price	Change	Weekly Chart							05	
♥ Maps	BRDM Broadem Inc.	33.27	^ 1.45 (27%)	~~~							Clients	
Gallery	ASWLL Aswell Corp.	45.13	^ 6.32 (12%)	$\sim \sim$			ase published		Ow Sta		Statistics	
A Typography	MIXL Mixal LTD.	71.13	∨ 7.2 (12%)	\sim		o Snap	up created shot created		%use %nice	1,01		
🛗 Calendar	LMPRD L.A. Prod.	30.24	^ 5.3 (18%)	\sim			ct edited	05:11:51 04:52:23	%iowa	tem ^{27,34} ait ^{2,02}	Servers	
Multilevel menu	ALK Allien K.	51.1	^ 7.5 (3.5%)	\sim		B Proje ∰ Bug f		07:11:01 09:10:31	%stea %idle	47,98		
	LNISW Lenstri Sweet	123.12	✓ 54.3 (15.3%)	$\sim \sim$	ΣSU	MMAR	Y		tps ²⁹	8548		
	RNLD Ron LEED	64.14	^ 12.33 (0.3%)		Total co	mmits	1245634	Release	count	227		
	BCN BeetCN Corp.	64.14	^ 12.33 (0.3%)	\sim		Tests passed 5222345			ets solved 32			
	AWS Awesome Inc.	64.14	^ 12.33 (0.3%)	\sim	Active cl	lients	52145	Support to	eam	288		
	Awesome Inc.											



(based on Few, 2006)


Objectives:

- 1. framework for design and engineering of Offshore Vessels
- 2. integrate the framework with the current module work
- 3. Test and implement

Objectives:

- framework for design and engineering of Offshore Vessels
- 2. integrate the framework with the current module work
- 3. Test and implement

Gradual implementation with <u>current</u> procedures and modules

Work decomposed in small tasks (1-4 weeks max for each «chunck»)

Ulstein departments as «clients & planners»

Objectives:

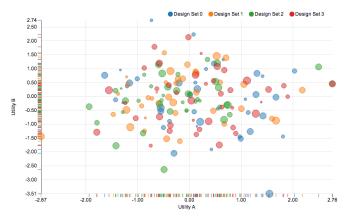
- framework for design and engineering of Offshore Vessels
- 2. integrate the framework with the current module work
- 3. Test and implement

Fall 2014 as period for «try and error»

What should we test first? Priorities?

UIN, UDS, UPC, UVE

In other words: which <u>relevant information</u> should we starting focusing?



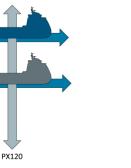
CATALOGUE VESSEL INTO UDD

Which relevant information should be handled?

Benchmark Comparison?

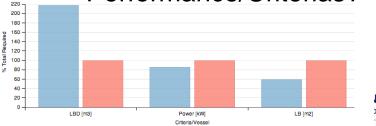
System Breakdown?

Owners' requirements?



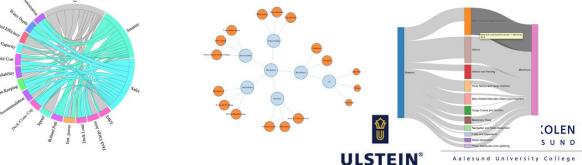
Capability	A. Handling	Supplying	Towing	Total
Cargo deck area [m ²]	500 ‡	500 \$	500 \$	1500
Bollard pull [MT]	50 \$	0 ‡	200 \$	250
Cargo volume [m ³]	500 ‡	3000 \$	500 \$	4000

Parametric Models?

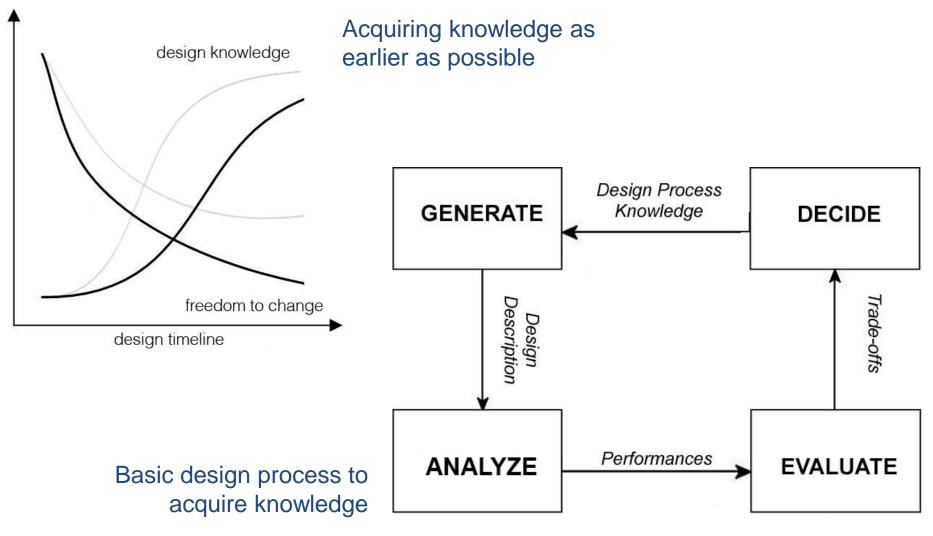

Parameters	Value	Range
ength [m]	100	
Breadth/Length	0.22	
Breadth [m]	22	
Depth/Breadth	0.45	
Depth [m]	9.9	
Draft/Depth	0.7	
Draft _{Design} [m]	6.9	
CB	0.75	
Powering [kW]	20689	
Price / GT [kNOK/GT]	50	

Mission/Capabilities dependencies?

Performance/Criterias?



Analyses database?

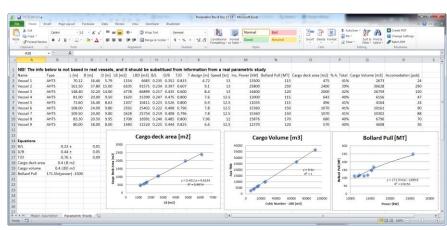

Bonus Features:

- Online collaborative environment
- Open source
- Features beyond powerpoint /excel
- On the way to very advanced online user interaction:
 - Data driven visualization
 - Virtual prototype

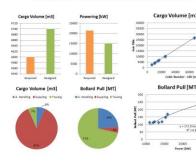
KNOWLEDGE IN CONCEPTUAL SHIP DESIGN

VISUAL REPRESENTATION OF KNOWLEDGE

Anscombe's data sets (1973)


1	-		11 		11			12 ·		12 -
x	Y	x	Y	x	Y	x	Ŷ	10 -	•	10 -
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	10		
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	<u>5</u> 8		8 - 8
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71			
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	6		6 -
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47		•	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	4 -		4 -
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25			
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50		4 6 8 10 12 14 16 18	4 6 8 10 12 14 16 18
	10.84	12.0	9.13	12.0	8.15	8.0	5.56		x ₁	x ₂
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91			
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89			
								12 -	•	12 -
Mean	ofx	[9	999]				10 -		10 -
			[11 1		1 1			Š 8		¥ 8-
			57.5							
								6		6 -
					8 4.12					•
Corr	elatio	on of	х-у: О	.816 0	0.816 0	.816 0	.817	4 ·		4 -
									4 6 8 10 12 14 16 18	4 6 8 10 12 14 16 18
									x ₃	×4

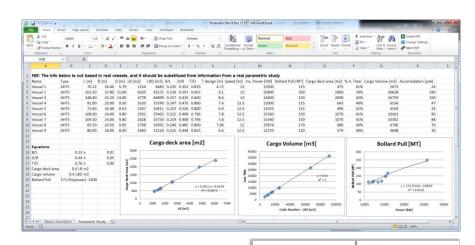
Even the most skilled designer must use visual information to fully grasp knowledge from the data



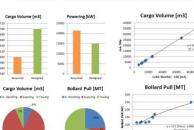

VISUAL REPRESENTATION OF KNOWLEDGE

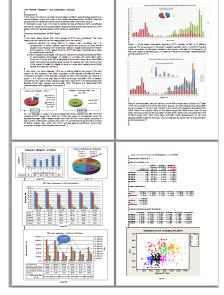
- Information concentrated, condensed, and processed via spreadsheet-like programs/outline specs
- Complex analyses, such as hydrodynamic and structural, are quickly transformed into a *number in a cell*
- This data is transformed into a large set of charts, which will feed the innumerous reports and presentations created during this process
- Lack of interaction

CHARTS COPY & PASTED FROM EXCEL TO POWER POINT

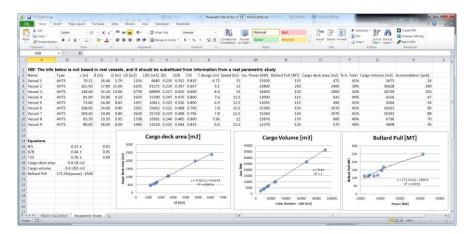


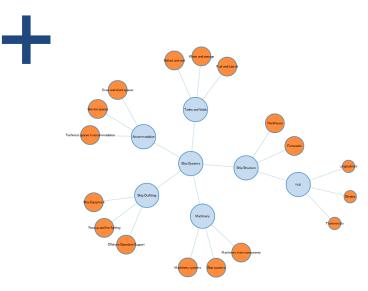
Aalesund University College


VISUAL REPRESENTATION OF KNOWLEDGE


- Process may be hiding other types of relevant information
- Many data visualizations are created to persuade rather than inform, with ideas disconnected from the context

How can a single stakeholder such as the shipowner, interact with the requirements and the extensive simulation data created for satisfying it, if usually results are presented to her as a picture set, within a folder containing a main .doc report with its many .ppt and .xls sources obscured?

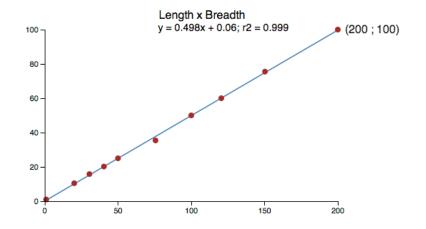


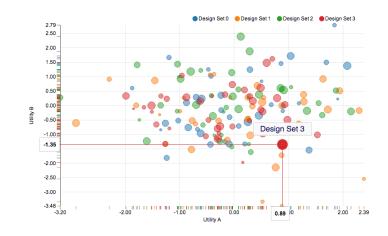


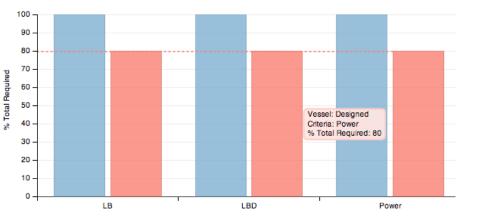
VISUAL REPRESENTATION OF KNOWLEDGE

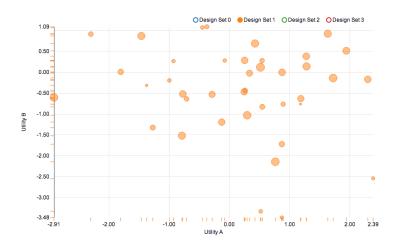
- Extension of the procedure
- Handling parametric data outside the row versus column format,
- Handling data in an open/readable format
- Progress beyond the passive share of performance evaluation
- Presenting a new type of graph, visualizing parametrically aspects previously handled as static figures.

DATA DRIVEN DOCUMENTS (D3)

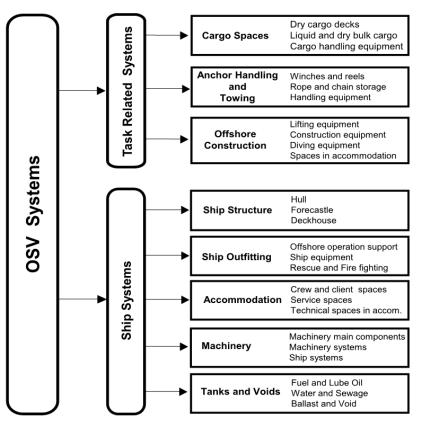

- JavaScript Library developed initially by the Stanford Visualization Group and today mainly developed by Michael Bostock
- Combines powerful visualization components and a datadriven approach to objects manipulation
- A representation-transparent approach to visualization for the web.
- Direct inspection and manipulation of text-like data, binding input data to HTML document elements.
- Efficiency in quickly rendering and animating charts. uscience.org/compit2014/


Using D3 during conceptual design allows the user to interact with different visualisations, creating an increased understanding of different variables correlations with each other. It also provides a simple and aesthetically pleasant interface.




DATA DRIVEN DOCUMENTS (D3)

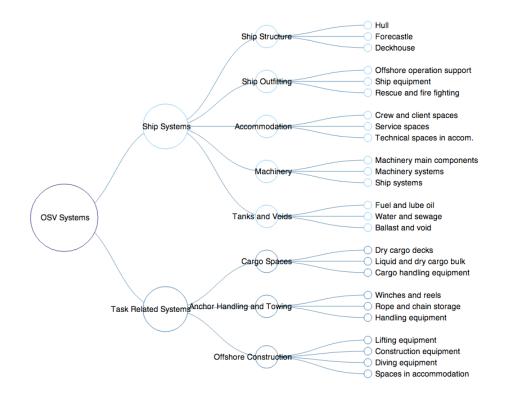
Basic Features

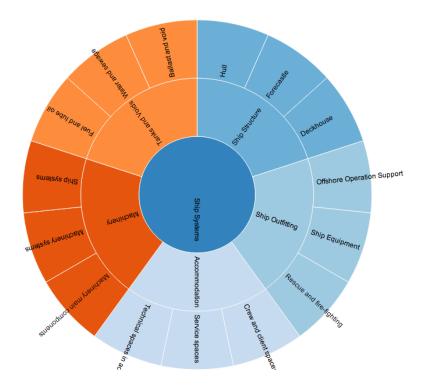


Aalesund University College

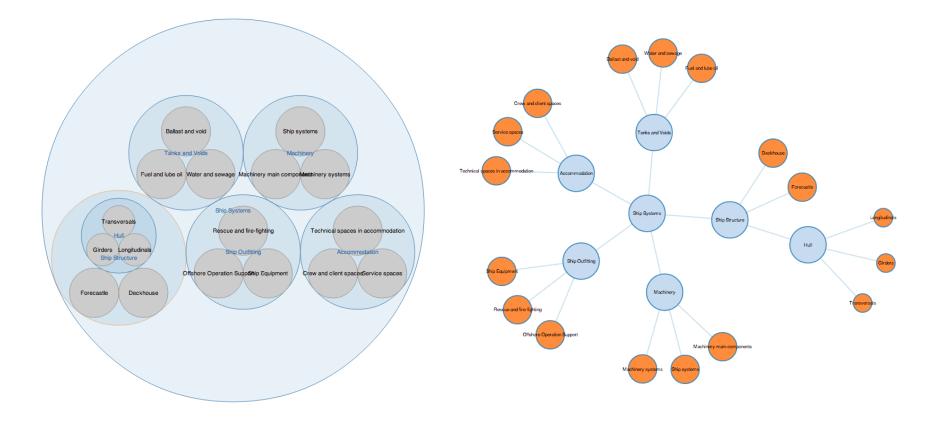
Structural Examples

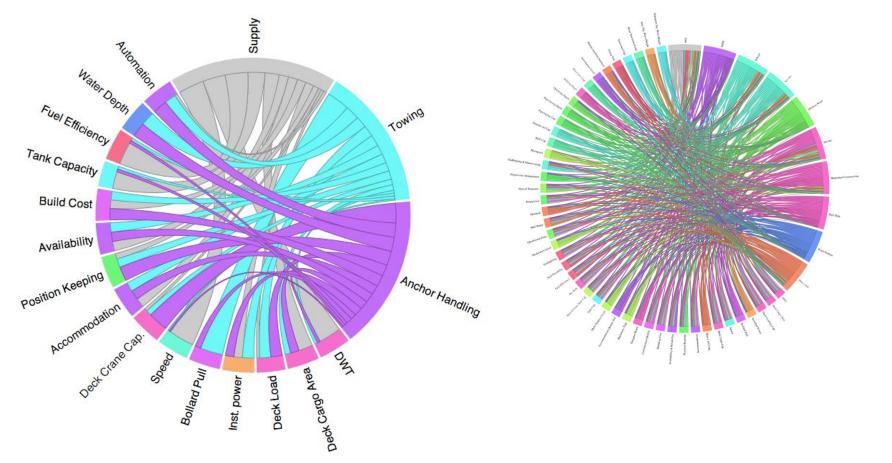
var Data OSV Systems = "name" : "OSV Systems", "parent": "null}, "name" : "Cargo Spaces", "parent": "Task Related Systems" }, "name" : "Dry cargo decks", "parent":"Cargo Spaces"}, "name" : "Liquid and dry cargo bulk", "parent":"Cargo Spaces"}, "name" : "Cargo handling equipment", "parent":"Cargo Spaces"}, "name" : "Anchor Handling and Towing", "parent":"Task Related Systems"}, "name" : "Winches and reels", "parent": "Anchor Handling and Towing}, "name" : "Rope and chain storage", "parent": "Anchor Handling and Towing"}, "name" : "Handling equipment", "parent":"Anchor Handling and Towing"}, "name" : "Offshore Construction", "parent":"Task Related Systems"}, "name" : "Lifting equipment", "parent": "Offshore Construction" }, "name" : "Construction equipment", "parent":"Offshore Construction"}, "name" : "Diving equipment", "parent":"Offshore Construction"}, "name" : "Spaces in accommodation", "parent":"Offshore Construction"}, "name" : "Ship Structure", "parent":"Ship Systems"}, "name" : "Hull", "parent": "Ship Structure" }, "name" : "Forecastle", "parent":"Ship Structure"}, "name" : "Deckhouse", "parent":"Ship Structure"}, "name" : "Ship Outfitting", "parent": "Ship Systems" }, "name" : "Offshore operation support", "parent":"Ship Outfitting"}, "name" : "Ship equipment", "parent":"Ship Outfitting"}, "name" : "Rescue and fire fighting", "parent":"Ship Outfitting"}, "name" : "Accommodation", "parent": "Ship Systems" }, "name" : "Crew and client spaces", "parent":"Accommodation"}, "name" : "Service spaces", "parent":"Accommodation"}, "name" : "Technical spaces in accom.", "parent":"Accommodation"}, "name" : "Machinery", "parent": "Ship Systems" }, "name" : "Machinery main components", "parent": "Machinery"}, "name" : "Machinery systems", "parent": "Machinery" }, "name" : "Ship systems", "parent": "Machinery" }, "name" : "Tanks and Voids", "parent": "Ship Systems" }, "name" : "Fuel and lube oil", "parent": "Tanks and Voids" }, "name" : "Water and sewage", "parent":"Tanks and Voids"}, "name" : "Ballast and void", "parent": "Tanks and Voids"},


- { "name" : "Ship Systems", "parent":"OSV Systems"},
- { "name" : "Task Related Systems", "parent":"OSV Systems"}
-];

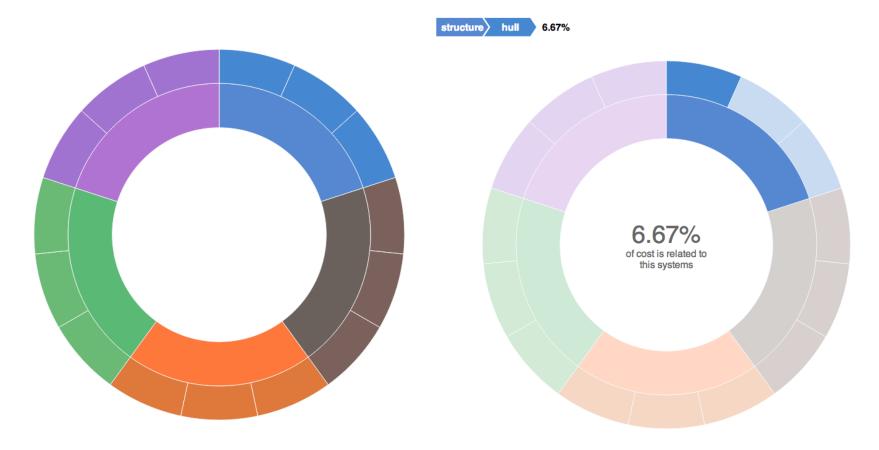

2

Aalesund University College

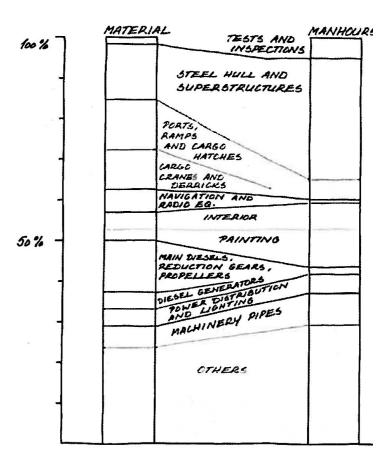

Structural Examples

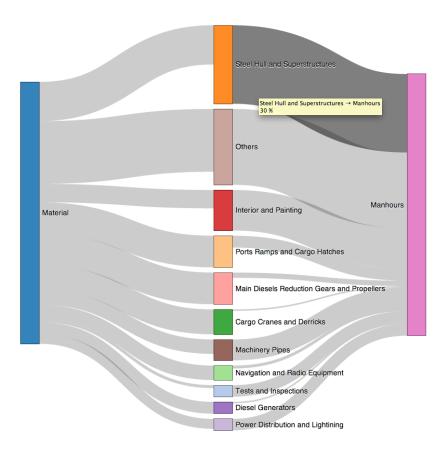


> Structural Examples

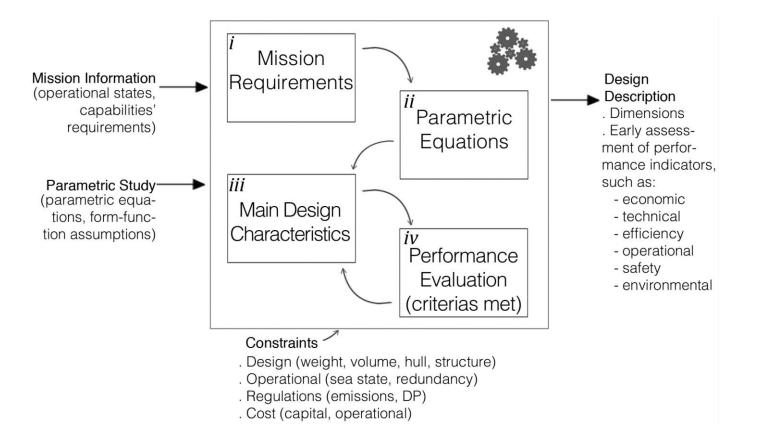

> Design Mapping

2



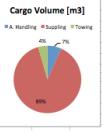

> Economic Examples

> Economic Examples



SIMPLE PARAMETRIC TOOL

General Methodology


SIMPLE PARAMETRIC TOOL

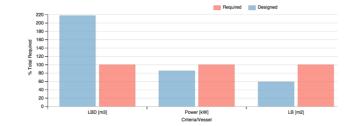
Simple Example – But containing ALL the parts of the methodology

1st example – EXCEL (pros and cons of the tool)

) Mission, Operation	al States Reg	uiromonte	and Canabilitie	e e		
		•	owing operation			
Capability	A. Handling	Suppling	owing operation Towing	al states' rec Total	uiremen	133
Cargo Deck Area [m2]	1000	300	100	1400		
Bollard Pull [MT]	50	10	150	210		
Cargo Volume [m3]	300	4000	200	4500		
2) Linking Conshilition	Denvironen	ta ta Vasal	Deservators			
Linking Capabilities	Requiremen	ts to vessel	Parameters			
			•			
	otal Value Req					
Cargo Deck Area [m2]	1400	-	LB [m2]			
Bollard Pull (MT)	210		Powering [kW]			
Cargo Volume (m3)	4500	11250	LBD [m3]			
						_
2) Defining Main Days						
Defining Main Para	imeters					
Parameters	Value	Range				
L	55.00		-			
B/L	0.25				-	
В	13.75					
D/B	0.43					
D T/D	5.94 0.68		-			
1/U ·	4.02		-			
СЬ	0.79		-			
Power	10189.19		-			
Price / GT (kNOK/GT)	70.00					
0.0.0						
4) Criterias						
Capabilities	Value	Criteria Met	(y/n)			
LBD [m3]	4492					
LB [m2]	756	No				
Power [kW]	10189	No				

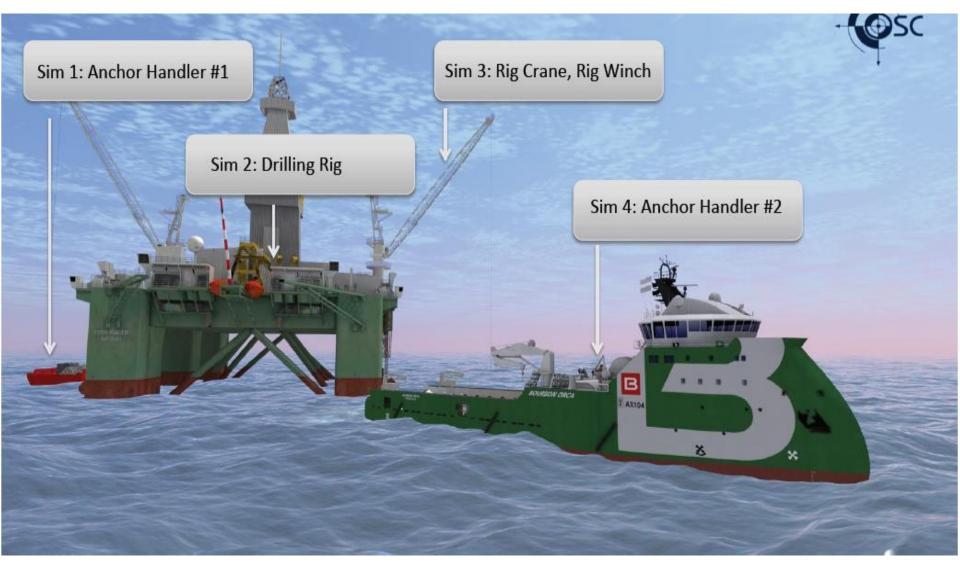
Output - Design Descriptio	on		-	A. Handling Suppling Towin
Main Characteristics			-	-
Length	55.0	m		- 7%
Breadth	13.8	m		
Depth	5.9	m		21%
Draft	4.0	m		
GT	1417			72%
Cb	0.787			-
Displacement	2395	ton		
				_
Attributes				
Cargo Volume	1797	m3		
Cargo Area	303	m2		Bollard Pull [MT]
Installed Power	10189	kW		
Price	99	MNOK		A. Handling Suppling Tow
Cargo Volume [m3]	-	Cargo Area [m2]	Powering [kW]	
				24%
5000	 – Bison 		25000	-
5000	1600		25000	
4500	1400		25000	
	1400 1200			
4500	1400			
4500	1400 1200		20000	
4500 4000 3500 2500 2000	1400 1200 1000		20000	
4500 4000 3500 2500 2500 1500	1400 1200 1000 800 600		20000	
4500 4000 3500 2500 2500 1500 1500	1400 1200 1000 800 600 400		20000	71%
4500 4000 2500 2500 1500 1000 500	1400 1200 1000 800 600 400 200		20000	
4500 4000 3500 2500 2500 1500 1500	1400 1200 1000 800 600 400		20000	71%

SIMPLE PARAMETRIC TOOL

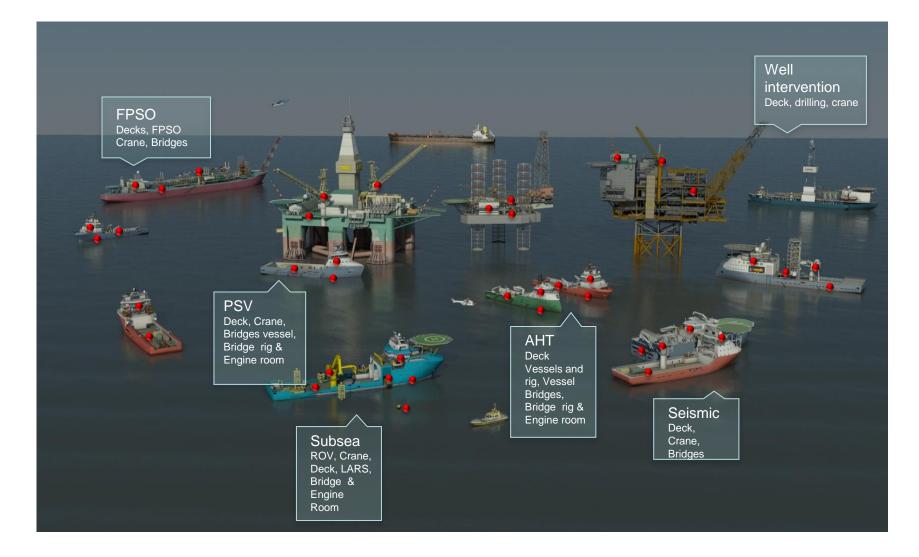

HTML + JavaScript

Capability	A. Handling	Supplying	Towing	Total
Cargo deck area [m ²]	500 \$	500 \$	500 \$	1500
Bollard pull [MT]	50 \$	0 \$	200 \$	250
Cargo volume [m ³]	500 \$	3000 🛟	500 \$	4000

The value of the table connects mission requirements with vessel capabilities.By changing any of the values, the total required capability changes, modifying the criteria and the requirement dependency wheel below.



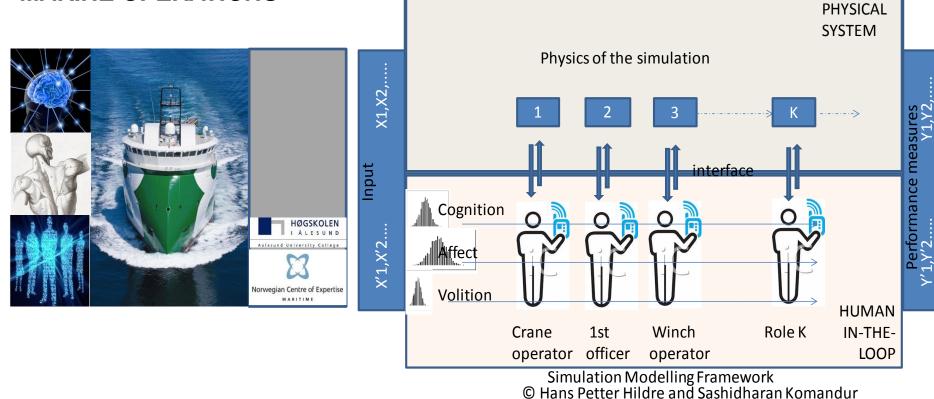
Parameters	Value	Range
Length [m]	100	
Breadth/Length	0.22	
Breadth [m]	22	
Depth/Breadth	0.45	
Depth [m]	9.9	
Draft/Depth	0.7	
Draft _{Design} [m]	6.9	
CB	0.75	
Powering [kW]	20689	
Price / GT [kNOK/GT]	50	


Integrated operations - Ship – Rig - Crane

Aalesund University College

The virtual continental shelf

Virtual prototyping of operations

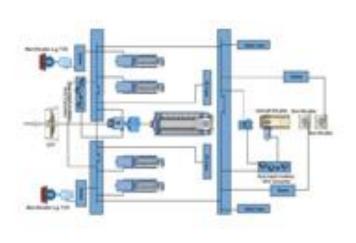

(ship, machinery, equipment and crew)

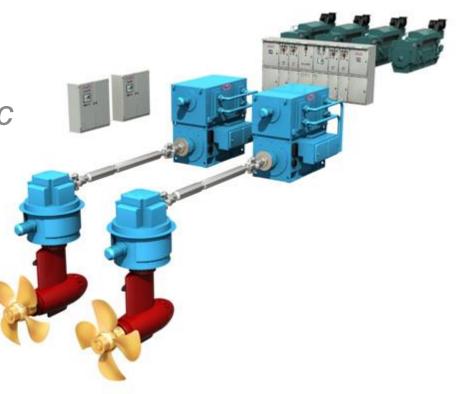
ormance measures Y1,Y2

Human Factors

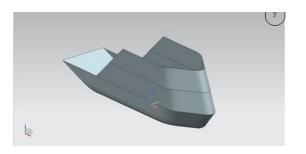
•UTILISATION OF INTEGRATED SIMULATOR FACILITIES FOR SAFETY RISK AND PERFORMANCE ASSESSMENT OF DEMANDING MARINE OPERATIONS

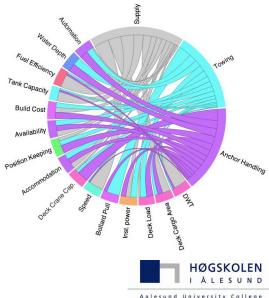
Mechatronics


- A Flexible and Common Control Architecture for Marine Cranes and Robotic Arms
- A Novel Integrated Anti-sway System for Rolls-Royce Marine Shipboard Cranes
- A Novel Climbing Robotic System for Ship Anti-fouling, Cleaning and Inspection



Machinery and Propulsion


- Integrated Machinery Systems
- Chief engineer
- •LNG and other fuels
- Propulsion for the arctic



OPPORTUNITIES

- Inserted in a research/industrial project (HIALS/ULSTEIN)
- Learn something on YOUR interest among OUR needs:
 - Complex Data Handling & Visualization
 - WebGL and D3
 - Javascript / Web Solutions
 - Ship Design Methods
 - Disciplines integration in Conceptual Phase
 - Decision making in early phase (economical/operational/technical issues)
 - 3D Cad/Modeling/Printer
 - Structural & other analysis
 - Other groups: machinery, robotic, operations
- Idea for a Bachelor Thesis (TCC trabalho de conclusão de curso)
- Credits exchange
- Starting with 1-2 months kick-off project
- Future opportunity to scholarship

